
,AC7A095 a"9 COLORADO STATE UNIV FORT COLLINS DEPT OF ELCRCL--T /l2i1
MODAL DECOMPOSITION OF COVARIANCE SEQUENCES FOR PARAMETRIC SPEC--ETC(U)
MAR 81 L L SCHARF, A A BEES, T VON REYN N00014-75-C-O518

UNCLASSIFIED TR-37 NL

'AT m-7hhI~



Modal Decomposition of Covariance Sequences

for Parametric 
Spectrum 

AnalysisOL

Louis L./Scharf

A. A. (Louis)/Beex

Timothy/von Reyn

'o" "'DTIC
ONR Technical Report #37 DI.... i /ELECTE

'Mar-- .. . FEB 181981 j
Prepared for the Office of ..NavX_41_eearch J

under Contt NO4l4-75-C-51,. /=

and

Army Research Office

under Contract TAAG29-79-C-0176

Louis L. Scharf,Principal Investigator

'w 3  Reproduction in whole or in part is permitted
for any purpose of the United States Government

Approved for public release; distribution unlimited

D 1I



Modal Decomposition of Covariance Sequences

for Parametric Spectrum Analysis

by

Louis L. Scharf 
2

A. A. (Louis) Beex 
3

Timothy von Reyn2

Accession For
NTIS GFA&I

DTIC TAB

Unannounced K'

Proceedings ICASSP, Atlanta Jsiiin

March1981Distribution/

Availability Codes__
jAvail and/or

Dist SpecialI

I This work has been supported by the Office of Naval Research, Statistics
and Probability Branch, Arlington, VA under Contract N00014-75-C-0S18, and
the Army Research Office, Research Triangle Park, NC under Contract
DAAG29-79 -C-0176. -

2 Electrical Engineering Department, Colorado State University, Fort Collins,
Colorado 80523.

3 Electrical Engineering Department, Virginia Polytechnic Institute and
State University, Blacksburg, VA 24061.



Contributed paper
1981 ICASSP
International Conference on
Acoustics, Speech, and Signal Processing
Atlanta, Mar. 30, 1981

MODAL DECOMPOSITION OF COVARIANCE SEQUENCES
FOR PARAMETRIC SPECTRUM ANALYSIS

1

Louis L. Scharf
Department of Electrical Engineering and Statistics

Colorado State University

Fort Collins, CO 80523

A. A. (Louis) Beex

Department of Electrical Engineering
Virginia Polytechnic Institute and State University

Blacksburg, VA 24061

Timothy von Reyn

Department of Electrical Engineering

Colorado State University

Fort Collins, CO 80523

ABSTRACT distinquish it from source and channel vocoders,

and to suggest that identification of formants and

In this paper we make the point that a wide other mode parameters proceeds statistically.
varitty of spvctrum types admit to modal analysis The domain of attraction for our modal decom-

wht.rtin th. modes are characterized by :,nplitudes, position of the covariance sequence includes ARMA

Zrecluencivs, nhd damping factors. The associated processes, harmonically- or nonharmonically-related
modal decomposition is appropriate for both con- sinusoids, white noise, and linear combinations cf

tilous and discrete components of the spectrum. these. This means the decomposition generalizes
The domain of attraction for the decomposition the covariance sequence model implicit in DFT,
includes ARNA sequences, harmonically- or nonhar- Pisarenko [3], and linear prediction formulations

munically-related sinusoids, damped sinusoids, of the parametric spectrum analysis problem in tte

white noise, and linear combinations of these, same way that Prony's ancient model [i] general-
Numerical results are presented to illustrate izes DFT, almost periodic, and autoregressive

the identification of mode parameters and corre- models for data.
sponding spectra from finite records of perfect

and estimtated covarlance sequences. The results COVARIANCE SEQUENCE APPROXIMANT
for sinustids and sinusoids in white noise are
interpretec: in terms of inphase and quadrature Motivated by the form of the covariance

effects atiricutable to the finite record length. sequence for line and rational spectra, we

propose the following order-p covariance sequence

INTRODUCTION approximant:

This is a paper about parametric covariance p
seqluence approximation fur the purposes of model rt (p) = E Aizi , t=0,1,2,...

identification and spectrum analysis. As with all i.1
parametric methods of analysis the key idea iM to
pose a detfensible model for the data, or some r_ t(p) - rt (p)

important statistical descriptor such as the c'ovar-

iance sequence, and then to identify model param- Jw i

eters. z i 

=
p
i e

Our .-ppro:;ch is to represent the covarlance

sequence of a wida-sense stationary process in a t t th
modal decomposition. Amplitudes, frequencies c l m wh e nand radius p ,and Ai the corresponding oode wezgnt.
(formants), and damping constants then become mode i ,

parameters to be identified. These mode paramuters The weights and modes appear in complex conjugate

may be used i vibration analysis, speech analysis, piirs. Typically a subset of the h" are unity to
model the discrete component of the spectrum, and

and forecasting and control. the rest are less titan unity to model the continu-
Corresponding to the modal decomposition for ous part of the spectrum. See [2] for review of

the covariance sequence is a modal decomposition discrete-time spectral theory.
for the underl,ing process. Thus the decompoition The Projg Device: Begin with a finite covari-

becomes an aiallsls/synthesis tool applicable to 
a i .

r s

data-compressed speech and data communication, and be ie th first 2p Fourier res coi)ceats for o

to stoclaatic simulation. The resulting synthe- density f(w). Solve for the regression coeffi-
sizer might 1e termed a statistical vocoder to cients (a , 2 ,. ..,ap) that satisfy

1
Supported by the Office of Naval Research under

Contract N00014-75-C-0518 and the Army Research

Office under Contract DAAG29-79-C-0176.
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ANALYSIS AND SYNTHESIS
rp 2 r 2  1 p Assume we are given a modal decomposition of

rp a2 rp+ the form
P

Srt (P) - i Aiz tO'l....
i.1

r p-2 The following question naturally arises: is there
a finite-dimensional spectrum representation (or

2p-2 p pI p 2p-l vocoder) that generates stochastic realizations of
the wide-sense stationary process xt that has r t(P)

Form the poJynomial for its covariance? The answer is a qualified yes,,

P(z)l + aiz-1 + ... + a z-p and the development goes as follows.
I Let X be a complex process generated by the

and find its roots zl,12,...,z p. Construct the autoregreshive scheme
Vandermonde ratrix

Xt PXt I 
+ 

C- t
1 1 . .. 1t -

where
2

zI  2  Zp
2 I zx 

: N(O,A)

P Et  : sequence of i.i.d. N(O,(I-1,12)A)random variables

.p zp- This process has covariance
"' p

t
and solve for weights A,A 2 ...,A in the follow- Rt Ap 't0,l,...

ing system of equations 2 The process

xt tA I r0 -Xe t
A2 r1 with w fixed and independent of Xt has covariance

. rt - Azt

z - pe 
j

A rP p-l Think of x generated this way as x (A,o,). Cen-

The modal deconposition elate p inaependent processes like this of the fcrr
xt = x t (APP i) and sum to get

p pr t(p) E AIz 1  P x
1 t

reconstructs (r .... r 2 1 ) and extends it as a
linear contJnalYonof v mplex modes. If (r 0 . . . . .
r2 -1 )  P p0 , comes from an ARMA (p ,p 0 ) pr(eMsH
ten A ! 0 for p > p and the modal aeeomposltion t ;wi

0 -fo Z A, t 2,zmmatcHe r t ror all t. Here PO < P0 " r
i  i

The.l e~er. Ievice: The trigonometric sum This statistical vocoder is illustrated in Figure 1.

It generates a special class of processes with
P r ltlJtw modal decompositions such that A > 0. It captures

f(.) - E rt(OP DFT and Pisarenko decompositions as special cases.

uniformly approximates f(w) as ptl and p Note 2

thed l 2The notation X :N(OA) indicates X0 Is complex
t into normal with mean zero and variance A>O. The model

(P)Jt-corresponding to pole locations more Jnte- is trivially generalized to other distributiona.
rior to the unit disc.

A-



PARAMETER IDEN;TIFICATION FROM A FINITE RECORD modified squared error

In this section we propose a twa-step (a-one, N-i p

a-two) procedure for obtaining a modified least E m E (,E a (rtri- () - 1
squares fit of r (p) to a covariance string that m i-p -rO

has been estraited as follows:

This amounts to filtering the errors with a moving
,i N average filter and counting them after p steps

r = -.-- x I have elapsed. If the filter weights are selected
iI1 so that

Least Scuares: Define the squared error P -i p -1
between rt (,) and rt as follows: iz aim = .7 (1-ziz )

i-O i-i

14-1 2
E - E (rt-rt(p)) then the approximating r (p) sequence satisfiest

- this homogeneous difference equation on its tail:

Setting derivatives of E with respect to (A,.), p
i-1,2. to zero yields'a discrete form of lie E a~rt 1 (P) - 0 , t > p

Aigrain-VillI'ms equations [61, slightly modified i-1
to reflect thie fact we are approximating a two-

sided sequence: This is one of the things Prony saw while studying

the effects of alcohol vapor pressures in 1795.
3 A- 1 With this modification the contribution of

E . (r.-rt (p))z 1 1tI 0 (i-1,2,.,p) r (p) to the modified squared error is annihilated
IA1  t *:+l and we are left with

J-1 N-1 a 2
a- (rt-rt(p))A itJltll- 0 E - art

Zt-p i-a
t._17+1 m t-p i.O

(i-l,2,.,p) Minimization with respect to the a. leads to a

Using the syl:xetry of the r t and r (p) sequences covariance-method of linear prediction on the tail

we may wrie this system of equations as of the covariance sequence,

p -TQ . PTQpA RTRa = -RT rp

PT(I = pTQPA where

where rp- " " r1  ro

1 i .. 1 1 0

z i  
r Z p 2 0 . . . u

pf Q= 00

0 rN- rN-2 " -p

p-1 p- T
-90 0 2 r (rprp+1,... ,rN_)
TT rlj.,Nl a - (a, ... ,ap)

The elements ofR R are "covariances of covari-
. . . . . ...... p snces".

There are a variety of fast algorithms for
p solving these equations. Once the a are found

A I P the corresponding modes z are obtained using a
polynomial rootfinding routine such as Muller's

This system of equations is nonlinear in the param- algorithm [4]. With these modes determined we mav
eters (Asyt .o and calls for iterative procedures solve a linear system of equations for the mode

the Rolu ic:t is to be "exact". We suggest here weights A This is basically Prony's method at

odif:Cn i'si Of these equations for wh .ich a work except for the fact that the a are obtained

a oe is from a squared error criterion rather than Pron'-tractble solition procedure expoint-wise criterion that results f om setting

A Modification & Solution: Consider the N-2p:
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Ra r 1I00

r t fi E x
One cannot help wondering what path statiLsti- t 100 i+t

cat inference might have taken had Gauss been
aware of Prony's parametric interpolation formu- See Figure 4 for spectra of approximating modal
lae when he published his work on least-squares decomposition and approximating modified least
in 1809. For at this early date all the ingred- squares fit.
Louts of a least-squares theory of rational
approximation would have existed. Two Closely-Spaced Sines: Here

APPLICATIONS AND NUMERICAL RESULTS x - sin It + cos .95 t
t 4 4

Here we present the results of several numeri- 160
cal experiments. These experiments are summar-- r - 16 xx

t~~~ 160 xii+tIzed in Table 1. in the table the column labels t
nave the following meanings:

Exact Model-Underlying model that generated See Figure 5 for spectra of approximating modal
data decomposition and approximating modified least

squares fit.
No. Samples - Number of samples used to esti-

mate rt (- means exact covariance used) ARMA(ll): Here x is the output of the

No. Corr. Lags - Number of correlation lags following filter exciteh by white noise:

used in fitting algorithm

Fitted ARMA(-,-) - For the modal decomposi- H(z) 1-0.95z

tion the initial order denotes the initial 1-0.25z
-

number of poles identified. When the final
order differs from the initial order this See Figure 6 for spectra of approximating modal
means a noise pole (at z-O) was added. For decomposition and approximating modified least
the modified least squares (MLS) the initial squares fit.
order tells what order AR was fit to ini-
tialize. The final order gives the approx- ARMA(3,2): Here x is the output of the
imating ARMA. following filter excites by white noise:

Two Closely-Saed Slines in Wf;N: Here -l -2
r n 'r+.1cs9, t~OiH(z) -- 2 -

t - Cos t + 4. cos.95 t + 100 l-l.5z- +l.21z-2-O.455z
-3

t 4 t

See Figure 2 for spectrum uf approximating modal See Figure 7 for spectra of approximating modal
decomposition, decumposition and approximating modified least

squares fit.
Sine in AR Noise: Here More examples may be found in [5].

r - coast + Z (H(z)H(z- )} CONCLUSIONS

H(z) - I/(l-JO.8z- )(l+jO.8z
-  We have proposed an approach to covariance

sequences and rational spectrum approximation that

See Figure 3 for spectrum of approximating modal captures discrete spectra and ARMA spectra as spe-

decomposition. clal cases. The approach is based on a modal do--

composition for the covariance sequence wherein

Comment: In a 1976 paper on digital filter design the modes correspond to poles. For a special clas:

[6J one of us advocated a two step procedure for of processes with modal decomposition there is a
fitting long AR sequences to exact correlation se- stochastic synthesis algorithm (or statistical vc-
quences, followed by modified least squares fitting coder) that may be used to Eenerate realizations.
quene followed) by modified least squares fittg This could be a valuable algorithm for data-com-
of an ARKA(p~q). The modified least squares pro- pesdcmuiainbsdo h nlsssn
cedure was originally proposed by Kalman and subse- pressed communication based on the analysis/syn-quently fully developed by Mulls and Roberts [71. thesis ideas of this paper.

Numerical results for noise-free and noisy
At the end of that paper we suggested that the sinusoids are encouraging. A virtue of this
same procedure might be applied to ANMA spectrum technique-and a virtue we want to emphasize-is
aialvsi. This suggestion we have explored In c'on- tcnqeadavru ewn oepaiel

"n htion w ave exple that one obtains from the analysis technique both
juntin with our modal de.composition studies.spcrmndaapothudeligodsf

Spectral resuLts for modil led least sqiuares fl I Ing a s pe c t r um 
a~d a map of the underlying modes of

frm l A models are shown with teovarlance sequence. These modes may he morte
fr mlung de ls In together wig spe,.ptra valuable in some instances than the spectrum it-
for modal decompust ions In the following exai, ies. self. In fact, the spectrum f(w) can often ob-

Sine: Here scure very interesting fine structure in the dat.-

that one can observe directly in the covariance

X sin!t sequence approximant r t(p).! x - sn 4
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Figure 7. Spectral estimate for ARMA(3,2). Using
" a 40 bias-estimated covariance lags from

-" - 200 samples
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Figure 5. Spectral estimate for two closely-spaced .. (o-S LS4) S, 4)1
sines. Using 20 bias-estimated covariance N. . IW_/ L.) N
lags from 160 samples
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%f ING EXACT COVAR4 ", SEQUENCE (M-S)

US LNG.ESH550ED COVAI-ANCE FQ/.MCE (M.S) , (2,o 1 ,4

4. 1.. .. 0. ,
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1

Figure 6. Spectral estimates for ARHA(1,l). Using Table 1. Experiments. NC means not computed.
40 bias-estimated covariance lags from

200 samples
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